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Abstract—Catechol 2,3-dioxygenase (C230), an extradiol-type dioxygenase cleaving the aromatic C—C bond
at the meta-position of dihydroxylated aromatic substrates, catalyzes the conversion of catechol to 2-hydroxy-
muconic semialdehyde. Based on a curing experiment, PCR identification, and Southern hybridization, the
gene responsible for C230 was localized on a 3.5-kb EcoRl/BamHI fragment and cloned from Pseudomonas
aeruginosa ZD 4-3, which was able to degrade both single and bicyclic compounds via a meta-cleavage path-
way. A complete nucleotide sequence analysis of the C230 revealed that it has one ORF, which showed a strong
overall amino acid similarity to the known gram-negative bacterial mesophilic C230s. The alignment analysis
indicated a distinct difference between the C230 in this study and the 2,3-dihydroxybiphenyl dioxygenases that
cleave bicyclic aromatic compounds. The heterogeneous expression of the pheB gene in E. coli BL21(DE3)
demonstrated that this C230 possesses a meta-cleavage activity.

Key words: catechol 2,3-dioxygenase, cloning, expression, meta-cleavage, pheB gene.

Aromatic compounds, which are widely used and
released into the natural environment in industrial and agri-
cultural activities, have become increasingly serious pollut-
ants in China. Because some of them are quite recalcitrant
or toxic when released into the environment, these hazard-
ous aromatic compounds have been receiving ever greater
attention and various ways of eliminating or reducing their
environmental presence have been pursued, including
bioremediation using soil microorganisms [1, 2].

The biodegradation of aromatic compounds has
been intensively studied, and many bacteria strains
have been isolated for their ability to degrade and use
these toxic compounds as source of carbon and energy.
The catabolic pathway in some gram-negative soil bac-
teria has been fully elucidated at the biochemical and
even at the molecular genetic level [3]. Generally, most
aromatic compounds are aerobically degraded through
a common intermediate, catechol or protocatechuate,
depending on the chemical structure of the starting
compound. The catechol is further degraded either by
cleavage between the two hydroxyl groups or by cleav-
age adjacent to the hydroxyl groups by catechol 2,3-
dioxygenase via a meta-pathway [4, 5]. Catechol dioxy-
genases are key enzymes in many bacterial pathways
for the degradation of aromatic compounds, and the
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reactions catalyzed by these enzymes are the rate-limit-
ing steps for the decomposition of some aromatic com-
pounds, such as p-xylene/p-toluate and 3-chlorotolu-
ene/s-chlorobenzoate [6].

Previously, we isolated two aromatic degrading bac-
teria that were designated as strains Pseudomonas aerug-
inosa ZD 4-3 and Comamonas testosteroni ZD 4-1. It was
found that strains ZD 4-3 and ZD 4-1 possessed meta-
and ortho-cleavage pathways, respectively. As for bio-
degradation properties, although strain ZD 4-1 was
superior in terms of the scope of pollutant degradation
and adaptation to pH fluctuation compared with strain
ZD 4-3, the meta-pathway in ZD 4-3 was obviously of
higher efficiency than the ortho-pathway in strain ZD
4-1, partly due to the higher activity of C230 than
C120. As part of our ongoing effort to characterize the
biochemical and genetic properties of extradiol-type
dioxygenases at the molecular level, the C230 gene in
P. aeruginosa ZD 4-3 was cloned and expressed in
Escherichia coli. The sequence of the C230 gene and
its deduced amino acid sequence were also character-
ized in this study.

MATERIALS AND METHODS

Bacterial strains, plasmids, and cultivation con-
ditions. Pseudomonas aeruginosa ZD 4-3 isolated in
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Fig. 1. Agarose gel electrophoresis of PCR amplification
products: (/) PCR result of reextracted plasmid DNA from
E. coli; (2) PCR product of crude plasmid DNA from ZD 4-3;
(3) PCR product of chromosome DNA from ZD 4-3.

our laboratory was cultured at 30°C in mineral medium
containing 250 mg/I phenol as the sole carbon source as
described previously [7]. E. coli TG1 and BL21(DE3)
were routinely grown at 37°C on LB medium. The
cloning vector used was pGEM-T Easy (Promega,
United States) and the expression vector was pET-
22b(+) (Novagen, United States). Ampicillin at a final
concentration of 100 mg/ml was used for the selection
of plasmids.

DNA manipulations. Isolation of plasmid, restric-
tion enzyme digestion, DNA ligation, and gel electro-
phoresis were performed using standard procedures
[8]. The P. aeruginosa ZD 4-3 chromosome DNA used
for Southern hybridization was isolated by using a Total
DNA Isolation Kit (Promega) following the manufac-
turer’s instructions. The Southern hybridization fol-
lowed the instructions of the DIG System (Roche
Molecular Biochemicals, Germany) User’s Guide. A
PCR fragment labeled with digoxigenin was used as a
probe for hybridization with template DNA.

Curing experiment. The method of the curing
experiment was described elsewhere [9].

Cloning of the pheB gene from P. aeruginosa ZD
4-3. Standard molecular cloning procedures were
employed [8, 10]. A pair of PCR primers was designed
based on the conserved end sequence of the known
C230-encoding genes from Pseudomonas sp. (forward
primer: 5'-GGCCA TGGTC ATGAA CAAAG GTGTA
ATGCG-3'; reverse primer: 5-GGGAA TTCTC
AGGTC AGCAC GGTCA TGAA-3'). In the above
primers, the underlined sequences indicate the endonu-
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clease sites Ncol and EcoRI, respectively. For pheB
gene amplification, the total DNA of strain ZD 4-3 was
used as a template and the PCR reaction (50 pl final
volume) contained 10x PCR buffer, 5 ul; 25 mM
MgCl,, 4 ul; 5 mM dNTP, 2 ul; 20 uM primer, 1 pl
each; template DNA, 100 ng; Tag polymerase
(5000 U/ml), 0.5 pl; and sterile distilled water, 35.5 pl.
The cycling parameters were 2 min at 94°C followed by
30 cycles of 94°C for 1 min, 45°C for 1 min, and 72°C
for 2 min, with the 72°C segment of the final cycle
extended to 10 min before cooling to 4°C. The resulting
PCR product was purified and ligated with the pGEM-T
Easy vector. Subsequently, the target segment was
digested with Ncol and EcoRI and then ligated with the
pET-22b(+) vector restricted by the same two endonu-
cleases.

Expression of the pheB gene in E. coli. The host
bacterium used to express the pheB gene was E. coli
BL21(DE3). After the recombinant vector (designated
pET-LH12) was constructed, it was transformed into
E. coli BL21(DE3) and induced with IPTG (1 mmol/l)
for 4 h after being cultured for 2 h for pheB gene
expression [11].

Preparation of clear supernatant and crude
lysate. Cells of strain ZD 4-3 and E. coli containing
plasmid pET-LH12 were cultivated overnight at 30 and
37°C, respectively, in LB medium. Cells were har-
vested by centrifugation at 12000 rpm for 5 min, and
the clear supernatant was collected for enzyme assay.
Consequently, the pellet was washed with phosphate
buffer solution, disrupted by sonication with 99 3-s
bursts on ice, and centrifuged at 12000 rpm for 10 min.
The clear supernatant obtained was used as a crude
lysate for enzyme assay.

C230 enzyme assay. The in vitro C230 enzyme
assay method was described previously elsewhere [7].

Sequence analysis. For analyzing the relationship
of the sequence and function of the pheB gene and also
the evolutionary relationship among the extradiol diox-
ygenases, the deduced amino acid sequence of pheB
cloned in this paper was aligned with other extradiol-
type dioxygenases. These extradiol-type dioxygenases
were found in GenBank and were divided into three
groups: mesophilic C230 for the biodegradation of sin-
gle-ring aromatic compounds (AY 112717, AF320981,
ABO035539, D85415, AB004065, U93090, U01825);
thermophilic C230 for single-ring fission (AF140605);
and bicyclic fission dioxygenases—2,3-bihydroxy-
dioxygenases (U22355, X97984, X66122, D44550).
The bioinformatics software BioEdit was used for
alignment analysis, with all parameters set at their
default values. DNAstar was used to construct the phy-
logenetic tree, and the parameters ‘“protein weight
matrix” and “DNA weight matrix” were set as the iden-
tity matrix and CLUSTALW, respectively.
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Fig. 2. Southern hybridization of chromosome and reextracted plasmid DNA. (a) Agarose gel electrophoresis of chromosome and
reextracted plasmid DNA fragments digested by EcoRI or EcoRl/BamHI: (1) reextracted plasmid DNA (EcoRl/BamHI-digested);
(2) reextracted plasmid DNA (EcoRI-digested); (3) chromosome DNA (EcoRI/BamHI-digested); (4) chromosome DNA (EcoRI-
digested). (b) Signal of endonuclease-digested fragments hybridized with the pheB gene probe. The arrowhead indicates the posi-

tion of the DNA fragments hybridized to the probe.

RESULTS AND DISCUSSION

Evidence for the existence of the C230 gene on
the chromosome. In the curing experiment, 95% of the
colonies of strain ZD 4-3 treated with acridine orange
could still grow with phenol. This indicated that the
acridine orange had not impaired the phenol utilization
ability of strain ZD 4-3 and that the C230 gene may be
a chromosome-encoded gene. The chromosome and
plasmid DNA of strain ZD 4-3 were extracted and used
respectively as PCR templates to further clarify the
position of the C230 gene. The plasmid DNA was first
extracted from ZD 4-3 as crude plasmid DNA, trans-
formed into E. coli TG1, and then reextracted from the
E. coli so the chromosome DNA mixed in with the
crude plasmid DNA was excluded. As shown in Fig. 1,
the pheB products were amplified with both the chro-
mosome and the crude plasmid DNA as templates but
could not be amplified by using the reextracted plasmid
DNA as the template. This result not only indicated that
the C230 gene was likely to be chromosome-encoded
but also verified that the crude plasmid DNA perhaps
contained some chromosome DNA on which the C230
gene was located. The reason was that the alkaline lysis
method used for plasmid DNA extraction may have
resulted in the mixture of linear chromosome DNA
with the crude plasmid DNA, so the PCR amplification
probably provided a false-positive result. To avoid the
mixture of linear chromosome DNA with plasmid
DNA, we transformed the circular plasmid DNA into
E. coli and subsequently reextracted the plasmid DNA
from the bacteria. As linear chromosome DNA cannot
multiply in E. coli, it was removed from the reextracted
plasmid DNA.

MICROBIOLOGY  Vol. 73 No. 6 2004

The chromosome and reextracted plasmid DNA
were used to detect the C230 gene by Southern hybrid-
ization detection with a PCR product from the total
DNA of strain ZD 4-3 as a probe. Figure 2a shows the
electrophoresis results of chromosome and reextracted
DNA digested by EcoRI and EcoRI/BamHI, respec-
tively. As seen in lanes / and 2, many DNA fragments
were more than 20 kb even after digestion by endonu-
cleases, suggesting that the plasmid DNAs were from
strain ZD 4-3 because normal plasmid DNAs (e.g., a
plasmid vector) used in standard cloning manipulation
were frequently several kilobases long. In Fig. 2b, a
strong hybridization signal was observed only for the
3.5-kb DNA fragment of chromosome DNA, while no
hybridization signal appeared for the plasmid DNA
fragments.

Recapitulating the above results, we explicitly dem-
onstrated that the C230 gene lies on the chromosome
DNA. To our knowledge, this may be somewhat unex-
pected. To date, many papers have indicated that most
catabolic genes for aromatic hydrocarbon degradation
are located on the plasmid and many C230 genes were
confirmed on the plasmid [12, 13].

Cloning of the C230 gene. A PCR using the for-
ward and reverse primers amplified a DNA fragment of
the expected size (about 0.9 kb). This fragment was
directly cloned into the pGEM-T Easy vector and then
transformed into E. coli TG1. Consequently, a positive
recombinant vector (designated pGEMT-LHS) was
identified through PCR and endonuclease digestion
with Ncol and EcoRI. To show whether the 0.9-kb
insert of pPGEMT-LHS5 contained and expressed a func-
tional C230 enzyme, the Ncol/EcoRI-digested DNA
segment was ligated onto the expression vector pET-
22b(+) digested with the same endonucleases. A
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recombinant expression vector (designated pET-LH12)
was identified by using Ncol and EcoRI as endonu-
cleases to show whether the DNA fragment was on the
expression vector. After the recombinant plasmid was
isolated, it was transformed into the expression host
E. coli BL21(DE23) for expression.

Nucleotide sequence analysis. To verify and ana-
lyze the pheB gene, the 0.9-kb DNA insert of pGEMT-
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LHS5 was completely sequenced. The complete nucle-
otide sequence and deduced amino acid sequence have
been deposited in GenBank under accession number
AY112717. A complete open reading frame, encom-
passing 924 bp and encoding a protein of 307 amino
acids, was identified. The base composition of the
cloned 0.9-kb fragment is 61.0% G+C. This value falls
within the wide range of G+C content of mesophilic

Fig. 3. Alignment of deduced amino acids of 12 extradiol dioxygenases. Gaps were inserted for optimal alignment, and the highly

homologous amino acid residues were shaded.
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Fig. 4. The phylogenetic tree of 12 extradiol dioxygenases.

C230 in Pseudomonas bacteria but is very different
from the C230 in thermophilic bacilli, which usually
have a relatively low G+C value [14]. The deduced
amino acid sequence of the pheB gene has a theoreti-
cally calculated molecular mass of 37 kDa.

In order to investigate the relationship between the
structure and function of C230 encoded by the pheB
gene, alignment was performed by comparing the
homology between the pheB deduced amino acid
sequence and the other extradiol dioxygenases using
the BioEdit software (Fig. 3). The alignment analysis
showed that 12 areas of homology exist in this group of
sequences, and these areas of homology are mainly dis-
tributed near the C end and the N end. Eltis and Bolin
reported that the middle strictly conserved residues of
extradiol dioxygenases probably constitute the active
site residues and the other strictly conserved residues
remote from the active site are likely to play structural
or folding roles [15]. Based on the three-dimensional
crystal structure of BphC-LB400 and BphC-kks102,
we speculated that the strongly conserved residues Gly-
31, His-157, and Leu-184 were likely to be the active
sites of the extradiol dioxygenases in this study. In
addition, pairwise alignment scores between pheB and
the other extradiol dioxygenases were as follows: XylE
(AF320981), 0.807; CatA (AB035539), 0.447; TdnC
(D85415), 0.283; AInE (AB004065), 0.285; CdoE

Activity of C230 in E. coli BL21 and wild-type strain ZD 4-3

Activity of C230, umol/(min mg)
Strains
culture supernatant | crude lysate
E. coli BL21 0.0237 3.5617
(containing ET-LH12)
strain ZD 4-3 0.0831 0.4520
E. coli BL21 n.d. n.d.

Note: n.d., not detected.

(U93090), 0.294; pheB (AF140605), 0.298; bphE
(U01825), 0.848; bphC (U22355), 0.117; bphC
(X97984), 0.162; bphC (X66122), 0.190; and pcbC
(D44550), 0.152. The homology values revealed that
the C230 shared low homology (<0.2) with the bicyclic
cleaving extradiol dioxygenases (U22355, X97984,
X66122, D44550).

A phylogenetic tree was constructed using DNAstar
to show the evolutionary relationship among the extra-
diol dioxygenases (Fig. 4). As shown in Fig. 4, the
extradiol dioxygenases cleaving bicyclic substrates
(U22355, X97984, X66122, D44550) exhibited a
remote genetic distance from the C230s preferentially
cleaving monocyclic substrates. The evolutionary anal-
ysis was consistent with their homology values data,
suggesting that a distinct difference existed between the
C230 in this study and the extradiol dioxygenases
cleaving bicyclic substrates. This result was in agree-
ment with the proposal of Harayama [16] that the extra-
diol dioxygenases could be divided into two families:
those showing a preference for bicyclic substrates and
those showing a preference for monocyclic substrates.
Also, we found that no significant differences existed
between the amino acids of the C230s and the thermo-
philic C230 (pheB, AF140605).

C230 gene expression and activity in E. coli
strains. The crude lysate supernatant and culture super-
natant of E. coli containing pET-LH12 were used for
the C230 enzyme assay, and the C230 activity was
also compared with that in wild-type strain ZD 4-3
(table). It can be seen from the table that, in the crude
lysate extract, the C230 activity of E. coli was much
higher than that in the wild-type strain ZD 4-3. More-
over, it can be inferred that, in both wild-type strain ZD
4-3 and E. coli, the C230 activity in the crude lysate
supernatant was higher than that in the bacterial culture
supernatant.

In brief, it can be demonstrated that the cloned C230
gene from the P. aeruginosa strain ZD 4-3 is a functional
MICROBIOLOGY  Vol. 73
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gene and has a high activity in the E. coli expression sys-
tem. The high C230 activity in E. coli facilitated the for-
ward transgenetic and also the enzyme purification oper-
ation for further analysis of C230 features.
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